

Department of Electrical & Electronics Engineering

ACCHEDITATION

Assignment Questions

SEN	M:	V	I		Aca	. Year:	2021-22		Stu	lent Aca. Batch:	2018	3-22	
Course Coordinator name: Mr. Kubera U Desgn.: Asst. Prof.										De	Dept.: E		
Course Title: Power System Analysis-2 C.Code: 18EE62 C.										C. Type:	Core	Theory	
												RT	
Q. No.	Full Question								Mapped	Level	Marks		
1	With trans	Usu form	al notat ations.	ions, Der	ive an ex	pression f	for obtaining Ybus using singular			CO1	L2	6	
2	Formulate Ybus matrix by singular transformation method for the power system whose oriented graph is shown in Fig below. Element number and self impedence of the elements in p.u are marked on the daigram. Neglect mutual coupling.							CO1	L3	8			
	What is load flow analysis? Explain how buses are classified to carry out load flow									CO2	L2	8	
3	analysis.								~				
4	Obta 4 (c)	in th with	e load fl a data as Bus No. 1 2 3 4	Pi - 0.5 -1.0 -0.3	ion at the low, Qi -0.2 0.5 -0.1	2 Vi 1.04∠04 - -	rst G-S itera Starting Bus 1 1 2 2 2 3 Remarks P Slack bu PQ bus PQ bus PQ bus	Endin Bus 2 3 3 4 4 5 5	ng (1 5 (1 0 0 0 0	X X R X (pu) (pu) 05 0.15 10 0.30 15 0.45 10 0.30 05 0.15	CO2	L3	10
5	5 Derive the expression for Jacobian elements in polar form in Newton-Raphson method of load flow analysis.								CO2	L2	10		

6	Deduce the Fast Decoupled Load Flow model clearly stating all the assumptions made.	CO2	L2	8
	Draw and Explain the following curves 1.			
	Input-Output curve			
7	2. Heat rate curve 3.	CO3	L2	8
	Increamental fuel cost curve 4.			Ű
	Incremental cost curve			
8	Derive the formula of transmission loss and hence B-coefficients for a two plant system.	CO3	L2	10
9	Define unit commitment and explain the constraints in unit commitment.	CO3	L2	8
	Derive the building algorithm for finding the elements of ZBus for			
10	i) Addition of a Branch	CO4	L2	10
	ii) Addition of a link			
	Form Zbus using building algorithm for the power system network shown in Fig. below.			
	Self impedences are marked on the daigram. Take element 3 as link and bus 1 as			
	reference bus.			
		a a 1		
	1 3. 1	CO4	L3	8
2	jo.5			
Ī	O 30.25 3			
	2			
12	Explain the Algorithm for Short Circuit Studies of an n-bus power system	CO4	L2	10
13	Discuss in detail the solution of swing equation by point by point method.	CO5	L2	8
14	Explain solution of swing equation by Runge-Kutta method.	CO5	L2	8
-				

Course Instructor

Page 2 of 2

λ.